Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 35(4): ar52, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381557

RESUMO

Host response to pathogens recruits multiple tissues in part through conserved cell signaling pathways. In Caenorhabditis elegans, the bone morphogenetic protein (BMP) like DBL-1 signaling pathway has a role in the response to infection in addition to other roles in development and postdevelopmental functions. In the regulation of body size, the DBL-1 pathway acts through cell autonomous signal activation in the epidermis (hypodermis). We have now elucidated the tissues that respond to DBL-1 signaling upon exposure to two bacterial pathogens. The receptors and Smad signal transducers for DBL-1 are expressed in pharyngeal muscle, intestine, and epidermis. We demonstrate that expression of receptor-regulated Smad (R-Smad) gene sma-3 in the pharynx is sufficient to improve the impaired survival phenotype of sma-3 mutants and that expression of sma-3 in the intestine has no effect when exposing worms to bacterial infection of the intestine. We also show that two antimicrobial peptide genes - abf-2 and cnc-2 - are regulated by DBL-1 signaling through R-Smad SMA-3 activity in the pharynx. Finally, we show that pharyngeal pumping activity is reduced in sma-3 mutants and that other pharynx-defective mutants also have reduced survival on a bacterial pathogen. Our results identify the pharynx as a tissue that responds to BMP signaling to coordinate a systemic response to bacterial pathogens.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Músculos Faríngeos/metabolismo , Transdução de Sinais/fisiologia
2.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36945421

RESUMO

Host response to pathogens recruits multiple tissues in part through conserved cell signaling pathways. In C. elegans, the bone morphogenetic protein (BMP) like DBL-1 signaling pathway has a role in the response to infection in addition to other roles in development and post-developmental functions. In the regulation of body size, the DBL-1 pathway acts through cell autonomous signal activation in the epidermis (hypodermis). We have now elucidated the tissues that respond to DBL-1 signaling upon exposure to two bacterial pathogens. The receptors and Smad signal transducers for DBL-1 are expressed in pharyngeal muscle, intestine, and epidermis. We demonstrate that expression of receptor-regulated Smad (R-Smad) gene sma-3 in the pharynx is sufficient to improve the impaired survival phenotype of sma-3 mutants and that expression of sma-3 in the intestine has no effect when exposing worms to bacterial infection of the intestine. We also show that two antimicrobial peptide genes - abf-2 and cnc-2 - are regulated by DBL-1 signaling through R-Smad SMA-3 activity in the pharynx. Finally, we show that pharyngeal pumping activity is reduced in sma-3 mutants and that other pharynx-defective mutants also have reduced survival on a bacterial pathogen. Our results identify the pharynx as a tissue that responds to BMP signaling to coordinate a systemic response to bacterial pathogens.

3.
Front Genet ; 14: 1220068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732316

RESUMO

The Transforming Growth Factor-ß (TGF-ß) superfamily of signaling molecules plays critical roles in development, differentiation, homeostasis, and disease. Due to the conservation of these ligands and their signaling pathways, genetic studies in invertebrate systems including the nematode Caenorhabditis elegans have been instrumental in identifying signaling mechanisms. C. elegans is also a premier organism for research in longevity and healthy aging. Here we summarize current knowledge on the roles of TGF-ß signaling in aging and immunity.

4.
PLoS Genet ; 17(10): e1009836, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34634043

RESUMO

A small number of peptide growth factor ligands are used repeatedly in development and homeostasis to drive programs of cell differentiation and function. Cells and tissues must integrate inputs from these diverse signals correctly, while failure to do so leads to pathology, reduced fitness, or death. Previous work using the nematode C. elegans identified an interaction between the bone morphogenetic protein (BMP) and insulin/IGF-1-like signaling (IIS) pathways in the regulation of lipid homeostasis. The molecular components required for this interaction, however, were not fully understood. Here we report that INS-4, one of 40 insulin-like peptides (ILPs), is regulated by BMP signaling to modulate fat accumulation. Furthermore, we find that the IIS transcription factor DAF-16/FoxO, but not SKN-1/Nrf, acts downstream of BMP signaling in lipid homeostasis. Interestingly, BMP activity alters sensitivity of these two transcription factors to IIS-promoted cytoplasmic retention in opposite ways. Finally, we probe the extent of BMP and IIS interactions by testing additional IIS functions including dauer formation, aging, and autophagy induction. Coupled with our previous work and that of other groups, we conclude that BMP and IIS pathways have at least three modes of interaction: independent, epistatic, and antagonistic. The molecular interactions we identify provide new insight into mechanisms of signaling crosstalk and potential therapeutic targets for IIS-related pathologies such as diabetes and metabolic syndrome.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Lipídeos/fisiologia , Transdução de Sinais/fisiologia , Envelhecimento/metabolismo , Animais , Autofagia/fisiologia , Citoplasma/metabolismo , Diabetes Mellitus/metabolismo , Homeostase/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Síndrome Metabólica/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...